This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007
Total synthesis of natural product (R)-4-phenyl-2-O-[β-dxylopyranosyl $(1 \rightarrow 6)-\beta$-d-glucopyranosyl]butane and its epimer
L.-J. Huang ${ }^{\text {a }}$, S.-J. Hou ${ }^{\text {a }}$ J.-B. Lia; D.-Q. Yu ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

To cite this Article Huang, L.-J. , Hou, S.-J. , Li, J.-B. and Yu, D.-Q.(2007) 'Total synthesis of natural product (R)-4-phenyl-2-O-[β-d-xylopyranosyl $(1 \rightarrow 6)$ - β-d-glucopyranosyl]butane and its epimer', Journal of Asian Natural Products Research, 9: 3, $223-231$
To link to this Article: DOI: 10.1080/10286020600603841
URL: http://dx.doi.org/10.1080/10286020600603841

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Total synthesis of natural product (R)-4-phenyl-2-O-[β-Dxylopyranosyl($\mathbf{1} \rightarrow \mathbf{6}$)- β-d-glucopyranosyl]butane and its epimer

L.-J. HUANG, S.-J. HOU, J.-B. LI and D.-Q. YU*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

(Received 9 November 2004; revised 16 January 2005; in final form 17 January 2005)

Abstract

The new compound (R)-4-phenyl-2-O-[β-D-xylopyranosyl $(1 \rightarrow 6)-\beta$-D-glucopyranosyl]butane $(\mathbf{1})$ and its epimer (2), together with (R)-4-phenyl-2-O- β-D-glucopyranosyl butane (24) and (S)-4-phenyl-2-O- β -D-glucopyranosyl butane (25) were firstly synthesized from 4-phenylbutan-2-one and glucose. The absolute configuration of C-2 for $\mathbf{1}$ was confirmed as R. Their anti-tumour activities were evaluated.

Keywords: 4-Phenylbutan-2-one; Glucose; Rhododendron athopogonosides; Synthesis

1. Introduction

(R)-4-Phenyl-2-O-[β-D-xylopyranosyl $(1 \rightarrow 6$)- β-D-glucopyranosyl]butane (1) (figure 1) was isolated from Rhododendron athopogonosides Maxim as a new natural product by our group [1]. The stems and leaves of Rhododendron athopogonosides Maxim have traditionally been used as a folk medicine to treat cough, bronchitis, asthma and so on [2-4]. The absolute configuration of $\mathrm{C}-2$ of compound 1 was determined to R by comparison the $[\alpha]_{D}$ value of aglycone with (R) - and (S)-4-phenylbutan-2-ol. However, it was disturbing to observe that the $[\alpha]_{D}$ value of aglycone $\left([\alpha]_{D}^{25}-3(c=0.6\right.$ benzene $\left.)\right)$ was noticeably different from the reported data $\left([\alpha]_{D}^{25}-21.1(c=1.0\right.$ benzene $)$) [5], in order to secure the absolute configuration of compound $\mathbf{1}$ and study its biological activities, $\mathbf{1}$ and its epimer (2) (figure 1) were synthesized from 4-phenylbutan-2-one (3) and glucose by 11-step reactions.

2. Results and discussion

$\mathbf{1}$ and $\mathbf{2}$ were synthesized via 4-phenylbutan-2-one $\mathbf{3}$ and glucose as the starting materials in 11 steps (Scheme 1).
The alcohol $\mathbf{4}$ was obtained by reduction of $\mathbf{3}$ with NaBH_{4} quantitatively. The glycosyl donor thichloroacetimidate 5 (prepared according to the literature [6] from glucose) reacted

[^0]

1

2

Figure 1. Structures of compounds 1 and 2.
with the acceptor 4 to give the compound 7 under the usual condition using $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ as the promoter in 30% yield. The reason for the low yield was perhaps the relative low reactivity of secondary alcohol and glycosyl donor. In order to improve the yield, the glycosyl donor was changed to glycosyl bromide [7] and 7 was obtained in 60% yield under the condition using HgBr_{2} and yellow HgO as the promoter. 7 was δ the mixture of the two diastereoisomers with the ratio of $1: 1$. The attempt to separate the two isomers by silica gel column chromatography failed. Deacetylation of 7 using NaOMe in anhydrous MeOH gave the completely deprotected compound 8 quantitatively. Selective protection of the $4^{\prime}, 6^{\prime}-\mathrm{OH}$ by using benzaldehyde dimethyl acetal and p-TsOH provided the diastereomers $9(2 R)$ and $\mathbf{1 0}(2 S)$ which were successively separated by silica gel column chromatography. The absolute configurations of $\mathbf{9}$ and $\mathbf{1 0}$ were determined to be R and S by comparison of the $[\alpha]_{D}$ value of aglycon (hydrolyzed from 9 and $\mathbf{1 0}$ with $0.2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$) with the known values of (R) - and (S)-4-phenylbutan-2-ol $[5,8]$, respectively. The $[\alpha]_{D}$ values of aglycon hydrolyzed from 9 and $\mathbf{1 0}$ were similar to the reported data [5,8]. Acetylation of $\mathbf{9}$ and $\mathbf{1 0}$ using $\mathrm{Ac}_{2} \mathrm{O}$ and Py afforded $\mathbf{1 1}$ and 12, respectively. Benzylidene acetals of $\mathbf{1 1}$ and $\mathbf{1 2}$ were removed by 80% AcOH to give 13 and 14 respectively. Selective protection of $6^{\prime}-\mathrm{OH}$ of $\mathbf{1 3}$ and $\mathbf{1 4}$ with TBDMSiCl gave $\mathbf{1 5}$ and 16, which were acetylated to give $\mathbf{1 7}$ and $\mathbf{1 8}$, respectively. The resulting $6^{\prime}-\mathrm{OH}$ compounds 19 and 20 were obtained by removing the protective group TBDMSi with 80% AcOH., 19 and 20 reacted with xylosyl trichloroacetimidate 21 [9] in $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ to give 22 and 23 , which were deprotected by NaOMe to yield the target compounds $\mathbf{1}$ and 2, respectively. Removing the benzylidene acetals of $\mathbf{9}$ and $\mathbf{1 0}$ by 80% AcOH gave 24 and 25, respectively (Scheme 2).

Compounds 1, 2, 24 and $\mathbf{2 5}$ were evaluated for their anti-tumour activities (table I) and showed no obvious anti-tumour activities.

3. Experimental

3.1 General experimental procedures

Melting points were determined on a $\mathrm{XT}_{4-} 100_{\mathrm{X}}$ micro-melting apparatus and are uncorrected. IR spectra were run on a Nicolet Impact-400 spectrometer. Optical rotations were measured on PE-241 digital polarimeter. NMR spectra were recorded on Varian Mercury- 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are referenced to the NMR solvents. Mass spectra were obtained on a ZAB2 F spectrometer. TLC was carried out on silica gel $\left(\mathrm{GF}_{254}\right)$. Column chromatography was run on silica gel (200-300 mesh) from Qingdao Ocean Chemical Factory. Dichloromethane was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$.

Scheme 1. Synthesis of $\mathbf{1}$ and 2, Reagents and conditions: a: $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}, 1 \mathrm{~h} ; \mathrm{b}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-50^{\circ} \mathrm{C}-$ r.t., 12 h ; c: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HgBr}_{2}$, yellow HgO , r.t., 12 h ; d: $\mathrm{MeOH}, \mathrm{NaOMe}$, r.t., 4 h; e: $\mathrm{PhCH}(\mathrm{OMe})_{2}, \mathrm{DMF}$, P-TSOH; $50^{\circ} \mathrm{C}$; f: $\mathrm{Ac}_{2} \mathrm{O}$, Py, r.t., 12 h , reduce pressure; g: $80 \% \mathrm{HOAc}, 70-80^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{h}:$ TBDMSiCl, DMF, DMAP, imidazole, r.t., 4 h; i: $\mathrm{Ac}_{2} \mathrm{O}$, Py, r.t., 5 h ; j: $80 \% \mathrm{HOAc}, 70-80^{\circ} \mathrm{C}, 4 \mathrm{~h} ; \mathrm{k}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O},-50^{\circ} \mathrm{C}-$ r.t., 5 h ; $1: \mathrm{MeOH}, \mathrm{NaOMe}$, r.t., 3 h.

3.2 General procedures for the synthetic compounds

3.2.1 General procedure for the preparation of glycosyl donors 5, 6 and 21. Glucopyranosyl donors $\mathbf{5}$ and $\mathbf{6}$ were prepared from glucose according to refs. [6] and [7], respectively. Xylopyranosyl trichloroacetimidate $\mathbf{2 1}$ was prepared from xylose according to the literature [9].

Scheme 2. Synthesis of compounds 24 and 25. Reagents and conditions: m: $80 \% \mathrm{HOAc}, 70-80^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
3.2.2 Compound 7. $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{ml})$ was added at $-50^{\circ} \mathrm{C}$ to the solution of $4(0.75 \mathrm{~g}, 5 \mathrm{mmol})$ (prepared from reduction of $\mathbf{3}$ by NaBH_{4} in quantitative yield) and $5(4.93 \mathrm{~g}, 10 \mathrm{mmol})$ in $50 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ which had previously been stirred over freshly activated $4 \AA$ molecule sieve under N_{2} at room temperature for 1 h . After that, the temperature was allowed to rise to room temperature and the mixture was stirred for $12 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{ml})$ was added and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and filtered through Celite. The solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined filtrate was then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated. The crude product was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=5: 1) .7(0.72 \mathrm{~g})$ was obtained as colourless oil in 30% yield.

The modified method with the glycosyl bromide as the donor: HgBr_{2} ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) and yellow $\mathrm{HgO}(2.24 \mathrm{~g}, 10.3 \mathrm{mmol})$ were added to the mixture of $4(0.95 \mathrm{~g}, 6.3 \mathrm{mmol})$, $6(2.9 \mathrm{~g}, 7.1 \mathrm{mmol})$ in 50 ml anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $2 \mathrm{~g} 4 \AA$ molecule sieve. The mixture was stirred at room temperature for 12 h under N_{2} and then filtered through celite; the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. the combined filtrate was concentrated. $7(1.8 \mathrm{~g})$ was obtained by column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29-7.14(\mathrm{~m}, 10 \mathrm{H})$, $5.21\left(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime}\right), 5.23\left(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$, for isomer), $5.09(\mathrm{t}, 1 \mathrm{H}$, $\left.J=9.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.05\left(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right.$, for isomer), $5.01(\mathrm{dd}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}$, $8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$, for isomer), $4.97\left(\mathrm{dd}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime}$, for isomer), $4.53\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.26-4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}\right.$, two isomers), 4.14-4.08 (m, 2H, H-6', two isomers), 3.78-3.73 (m, 2H, H-2, two isomers), 3.70-3.64 (m, 2H, H-5', two isomers), 2.70-2.50 (m, 4H, H-4, two isomers), 2.16-1.91

Table I. Anti-tumour activities of compounds 1, 2, 24 and 25.

	$I C_{50}(\mu g / m l)$				
	A549	BEL7402	BGC823	HCT-8	A2780
	>10	>10	>10	>10	>10
$\mathbf{1}$	>10	>10	>10	>10	>10
$\mathbf{2}$	>10	>10	>10	>10	>10
$\mathbf{2 4}$	>10	>10	>10	>10	
$\mathbf{2 5}$					

$\left(\mathrm{m}, 24 \mathrm{H}, 8 \times \mathrm{CH}_{3} \mathrm{CO}\right.$, two isomers), $1.89-1.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$, two isomers), 1.76-1.67 (m, $2 \mathrm{H}, \mathrm{H}-3$, two isomers), $1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-1$ for isomer), $1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-$ 1). ESI-MS m/z (\%): $503\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.3 Compound 8. To the solution of $7(0.5 \mathrm{~g}, 1.04 \mathrm{mmol})$ in $10 \mathrm{ml} \mathrm{CH}_{3} \mathrm{OH}$, was added two drops of 1 M NaOMe in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature. The mixture was concentrated after being stirred at room temperature for 4 h . The crude product was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=9: 1\right) . \mathbf{8}(0.32 \mathrm{~g})(1: 1$ ratio of compound 24 and 25) was obtained as colourless oil in quantitative yield.
3.2.4 Compounds 9 and 10. To a solution of $\mathbf{8}(0.5 \mathrm{~g}, 1.6 \mathrm{mmol})$ and $\mathrm{PhCH}(\mathrm{OMe})_{2}(0.3 \mathrm{~g}$, 2 mmol) in dry DMF (15 ml), was added $\mathrm{p}-\mathrm{TsOH}$ monohydrate $(20 \mathrm{mg})$. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ under reduced pressure for 3 h , diluted with EtOAc , then washed with saturated NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated. Chromatography of the residue on a silica gel column ($4: 1=\mathrm{PE} /$ acetone $)$ afforded 9 and $\mathbf{1 0}$. In order to determine the absolute configuration of 9 and $\mathbf{1 0}, 9$ and $\mathbf{1 0}$ were hydrolyzed with $0.2 \mathrm{~mol} / \mathrm{L}$ HCl . The procedure is as follows: To a solution of $\mathbf{1 0}(0.1 \mathrm{~g}, 0.25 \mathrm{mmol})$ in benzene, was added $10 \mathrm{ml} 0.2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$. The resulting mixture was refluxed for 12 h and then diluted with $20 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with saturated NaHCO_{3} and water, dried over MgSO_{4}, and concentrated. Aglycon 4-phenylbutan-2-ol (30 mg) was obtained by silical gel column chromatography. The $[\alpha]_{D}$ value of aglycon $\left([\alpha]_{D}^{25}+19.8(c=0.16\right.$, benzene $\left.)\right)$ was close to the reported $[\alpha]_{D}$ value of (S)-4-phenylbutan-2-ol $\left([\alpha]_{D}^{25}+21.1(c=\right.$ 1.00, benzene)) [8]. Compound 9: $[\alpha]_{D}^{25}-57.9\left(c=0.07, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right) \delta(\mathrm{ppm}): 7.49-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 4.46(\mathrm{brs}, 1 \mathrm{H}), 4.30(\mathrm{brs}, 1 \mathrm{H}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 4.2 \mathrm{~Hz}), 3.89-3.83(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.65(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=10.0,8.0 \mathrm{~Hz})$, $3.46(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.69(\mathrm{~m}$, $2 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$. ESI-MS: $\mathrm{m} / \mathrm{z}(\%) 423\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound 10: $[\alpha]_{D}^{25}-29.9\left(c=0.08, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta(\mathrm{ppm}): 7.52-7.13$ $(\mathrm{m}, 10 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.49(\mathrm{brs}, 1 \mathrm{H}), 4.45(\mathrm{brs}, 1 \mathrm{H}), 4.21(\mathrm{dd}, 1 \mathrm{H}$, $J=10.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}), 3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \delta), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $8.0 \mathrm{~Hz}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 423\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.

According to the same procedure as above-mentioned, the $[\alpha]_{D}$ value of aglycon hydrolysed from $9\left([\alpha]_{D}^{25}-17.5\left(c=0.15\right.\right.$, benzene)) was the same as the $[\alpha]_{D}$ value of $(R)-$ 4-phenylbutan-2-ol $\left([\alpha]_{D}^{25}-21.1(c=1.00\right.$, benzene $)$). The absolute configuration at $\mathrm{C}-2$ of 9 and $\mathbf{1 0}$ was R and S , respectively. Compound (+)-4: $[\alpha]_{D}^{25}+19.8(c=0.16$, benzene $)$, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.91(\mathrm{brs}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) . \mathrm{EI}-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)$ $150\left(\mathrm{M}^{+}, 15\right), 132$ (50), 117 (100), 91 (100), 71 (47), 57 (78). Compound (-)-4: $[\alpha]_{D}^{25}-17.5(c=0.15$, benzene $)$; the spectral data of $(-)-4$ were the same as those of $(+)-4$.
3.2.5 Compounds $\mathbf{1 1}$ and 12. To the solution of $\mathbf{9}(0.5 \mathrm{~g}, 1.25 \mathrm{mmol})$ in 10 ml Py , was added $\mathrm{Ac}_{2} \mathrm{O}(0.51 \mathrm{~g}, 5 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h , then evaporated. Chromatography of the residue on a silica gel column ($10: 1=\mathrm{PE} /$ acetone $)$ afforded $11(0.58 \mathrm{~g}) .[\alpha]_{D}^{25}-75\left(c=0.05, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
(ppm): 7.46-7.19 (m, 10H), $5.52(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.00(\mathrm{dd}, 1 \mathrm{H}, J=9.6$, $8.0 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.38(\mathrm{dd}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H})$, $3.73(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 507$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound $\mathbf{1 2}$ was obtained according to the same procedure. $[\alpha]_{D}^{25}-$ $38.5\left(c=0.07, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.44-7.16(\mathrm{~m}, 10 \mathrm{H})$, $5.51(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.04(\mathrm{dd}, 1 \mathrm{H}, J=9.6,8.0 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 4.33(\mathrm{dd}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}, 5.2 \mathrm{~Hz}), 3.83-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 507\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.6 Compounds 13 and 14. The solution of $11(0.5 \mathrm{~g}, 1.03 \mathrm{mmol})$ in $20 \mathrm{ml} 80 \% \mathrm{HOAc}$ was stirred at $70-80^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under vacuum to give a residue which was purified by silica gel chromatography. $13(0.3 \mathrm{~g})$ was obtained as colourless oil. $[\alpha]_{D}^{25}-47.3\left(c=0.14, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta ?(\mathrm{ppm}): 7.25-7.13$ $(\mathrm{m}, 5 \mathrm{H}), 5.07(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.76(\mathrm{dd}, 1 \mathrm{H}, J=9.6,8.0 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $3.90-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.80-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 419\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound 14 was obtained by the same procedure above-mentioned. $[\alpha]_{D}^{25}-3\left(c=0.10, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta(\mathrm{ppm}): 7.29-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.78$ $(\mathrm{dd}, 1 \mathrm{H}, J=9.6 \delta, 8.0 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.86-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 1 \mathrm{H})$, $2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 419\left([M+N a]^{+}, 100\right)$.
3.2.7 Compounds 15 and 16. To a solution of $\mathbf{1 3}(0.288 \mathrm{~g}, 0.73 \mathrm{mmol}), \mathrm{TBDMSiCl}(164 \mathrm{mg}$, 1.2 mmol) in 10 ml DMF, were added DMAP ($21 \mathrm{mg}, 0.17 \mathrm{mmol}$) and imidazole (197 mg , 2.90 mmol). The resulting mixture was stirred at room temperature for 4 h , diluted with EtOAc $(30 \mathrm{ml})$, then washed with saturated NaCl and $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated. Chromatography of the residue by silica gel column (6:1 = PE/acetone) afforded $\mathbf{1 5}(0.28 \mathrm{~g})$. $[\alpha]_{D}^{25}-40.9\left(c=0.41, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.27-7.15(\mathrm{~m}$, $5 \mathrm{H}), 5.09(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.88(\mathrm{dd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $3.95(\mathrm{dd}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, 6.5 \mathrm{~Hz}), 3.80-3.74(\mathrm{~m}, 2 \mathrm{H})$, $3.42-3.38(\mathrm{~m} \mathrm{1H}), 3.16(\mathrm{brs}, 1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 1.86-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11$ $(\mathrm{s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS: $m / z(\%) 533\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. According to the same procedure above-mentioned, compound 16 from 14 was obtained as colourless oil in 86% yield. $[\alpha]_{D}^{25}-8.9\left(c=0.30, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.30-7.15$ $(\mathrm{m}, 5 \mathrm{H}), 5.09(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.93(\mathrm{dd}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 8.0 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $3.92(\mathrm{dd}, 1 \mathrm{H}, ~ J=10.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}), 3.84(\mathrm{dd}, 1 \mathrm{H}, ~ J=10.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}), 3.74(\mathrm{t}, 1 \mathrm{H}$, $J=9.5 \mathrm{~Hz}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS: $m / z(\%) 533\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.8 Compounds $\mathbf{1 7}$ and 18. To a solution of $\mathbf{1 5}(0.264 \mathrm{~g}, 0.53 \mathrm{mmol})$ in $5 \mathrm{ml} \mathrm{Py}, \mathrm{Ac}_{2} \mathrm{O}$ $(81 \mathrm{mg}, 0.8 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 5 h ,
then evaporated. Chromatography of the residue on a silica gel column (10:1 $=\mathrm{PE} /$ acetone $)$ afforded $17(0.25 \mathrm{~g}) .[\alpha]_{D}^{25}-24.9\left(c=0.09, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.06(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.95(\mathrm{dd}, 1 \mathrm{H}$, $J=9.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.53-$ $3.49(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H). ESI-MS: $m / z(\%) 461\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound 18 was obtained according to the same procedure. $[\alpha]_{D}^{25}+10.9\left(c=0.09, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.00(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.98$ $(\mathrm{dd}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.73-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.72-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H). ESI-MS: m/z (\%) $461\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.9 Compounds 19 and 20. The solution of $17(0.2 \mathrm{~g}, 0.36 \mathrm{mmol})$ in $10 \mathrm{ml} 80 \% \mathrm{HOAc}$ was stirred at $70-80^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under vacuum to give a residue which was purified by silica chromatography. $19(0.13 \mathrm{~g})$ was obtained as colourless oil. $[\alpha]_{D}^{25}-50\left(c=0.11, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.28-7.16$ $(\mathrm{m}, 5 \mathrm{H}), 5.24(\mathrm{dd}, 1 \mathrm{H}, J=10,9.0 \mathrm{~Hz}), 5.01(\mathrm{t}, 1 \mathrm{H}, J=10 \mathrm{~Hz}), 4.96(\mathrm{dd}, 1 \mathrm{H}, J=9.5$, $8.5 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz})$, $3.55(\mathrm{dd}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.84(\mathrm{~m} \mathrm{1H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$. ESIMS: $m / z(\%) 575\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound 20 was obtained as the same procedure above-mentioned. $[\alpha]_{D}^{25}-8.9\left(c=0.08, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 7.30-7.15 (m, 5H), $5.26(\mathrm{dd}, 1 \mathrm{H}, J=10,9.0 \mathrm{~Hz}), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=10.0,9.0 \mathrm{~Hz})$, $5.01(\mathrm{dd}, 1 \mathrm{H}, J=9.0,8.0 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{dd}, 1 \mathrm{H}$, $J=12.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}$, $J=6.0 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 575\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.10 Compounds 22 and 23. To the solution of $19(0.3 \mathrm{~g}, 0.68 \mathrm{mmol})$ and xylopyranosyl trichloroacetimidate (21) $(0.42 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 20 ml anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which had previously been stirred over freshly activated $4 \AA$ molecule sieve under N_{2} at room temperature for 1 h , was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.05 \mathrm{ml})$ at $-50^{\circ} \mathrm{C}$. After that, the temperature was allowed to rise to room temperature and the mixture was stirred at room temperature for 5 h . $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{ml})$ was added and the mixture was dilute with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and filtered through a layer of Celite. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined filtrate was then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated. The crude product was purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=5: 1$). 22 $(0.35 \mathrm{~g})$ was obtained as colourless oil. $[\alpha]_{D}^{25}-41.5\left(c=0.12, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.28-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.12(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 5.01-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.11(\mathrm{dd}$, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}$, $8.4 \mathrm{~Hz}), 2.76-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.99\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 1.86-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz})$. ESI-MS: $m / z(\%) 719\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. Compound 23 was obtained as colourless oil according to the same procedure. $[\alpha]_{D}^{25}-16.5\left(c=0.13, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.30-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.11(\mathrm{t}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.00-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.13$ $(\mathrm{dd}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, 4.0 \mathrm{~Hz}), 3.81-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, 8.4 \mathrm{~Hz}), 2.70-2.53$ $(\mathrm{m}, 2 \mathrm{H}), 2.08-1.97\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 1.86-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz})$. ESIMS: $m / z(\%) 719\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.
3.2.11 Compounds 1 and 2. To the solution of $22(0.2 \mathrm{~g}, 0.29 \mathrm{mmol})$ in $5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{OH}$, was added two drops of 1 M NaOMe in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature. The resulting mixture was stirred at room temperature for 3 h , then evaporated. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=9: 1\right) . \mathbf{1}(0.1 \mathrm{~g})$ was obtained as colourless powder in quantitative yield. mp: $180-181^{\circ} \mathrm{C},[\alpha]_{D}^{25}-77.6(c=0.05$, EtOH ; $[\alpha]_{D}^{20}-81.0$ for natural product). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 7.26-7.20(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9$ and $\mathrm{H}-10), 7.14(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.96-4.87(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{OH}), 4.24(\mathrm{~d}$, $\left.1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.92\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.79$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2), 3.67\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{H}-5^{\prime \prime}\right), 3.57(\mathrm{dd}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}$, $6.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.29-3.24 (m, 2H, H-3' ${ }^{\prime \prime}$ and H-4'), 3.16-3.05 (m, 3H, H-3', H-4' and H-5'), $3.02-2.92\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-2^{\prime \prime}\right.$ and $\left.5^{\prime \prime}\right), 2.70-2.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, $1.67-1.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})$: 142.3 (C-5), 128.3 (C-7 and C-9), 128.2 (C-6 and C-10), 125.5 (C-8), 104.4 (C-1"), 100.7 (C$\left.1^{\prime}\right), 76.8\left(\mathrm{C}-3^{\prime}\right), 76.5\left(\mathrm{C}-5^{\prime}\right), 75.7\left(\mathrm{C}-3^{\prime \prime}\right), 73.3\left(\mathrm{C}-2^{\prime}\right), 73.3\left(\mathrm{C}-2^{\prime \prime}\right), 72.7(\mathrm{C}-2), 69.9\left(\mathrm{C}-4^{\prime}\right), 69.5$ (C-4"), 68.4 (C-6'), 65.6 (C-5"), 38.8 (C-3), 31.2 (C-4), 19.7 (C-1). FAB-MS: m / z (\%) 467 $\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 115(50), 91(55) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3386,2972,2925,2848,1078,1041$. HRFAB-MS: $m / z 467.1889[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{10} \mathrm{Na}, 467.1893$). The spectral data were the same as the reported natural product [1].

Compound 2 was obtained from 23 as colourless oil according to the same procedure mentioned above. $[\alpha]_{D}^{25}-40.7(c=0.1, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}):$ $7.27-7.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-9$ and H-10), $7.14(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-8), 5.02-4.83(\mathrm{~m}$, $6 \mathrm{H}, 6 \times \mathrm{OH}), 4.22\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.17\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}\right), 3.89(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=10 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.51(\mathrm{dd}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, 6.0 \mathrm{~Hz}$, $\left.\mathrm{H}-6^{\prime}\right), 3.29-3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime \prime}\right), 3.15-3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.10-2.92\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, $\mathrm{H}-4^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\left.\mathrm{H}-5^{\prime \prime}\right), 2.70-2.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.78-1.71$ (m, 1H, H-3), $1.68-1.62$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 142.4$ (C-5), 128.3 (C-7 and C-9), 128.2 (C-6 and C-10), 125.5 (C-8), 103.9 (C-1"), 102.8 (C-1'), $76.6\left(\mathrm{C}-3^{\prime}\right), 76.5\left(\mathrm{C}-3^{\prime \prime}\right), 75.7\left(\mathrm{C}-5^{\prime}\right), 74.7(\mathrm{C}-2), 73.5\left(\mathrm{C}-2^{\prime \prime}\right), 73.3\left(\mathrm{C}-2^{\prime}\right), 69.9\left(\mathrm{C}-4^{\prime}\right), 69.5$ (C-4"), 68.3 ($\left.\mathrm{C}-6^{\prime}\right), 65.6\left(\mathrm{C}-5^{\prime \prime}\right), 38.3(\mathrm{C}-3), 30.6(\mathrm{C}-4), 21.8(\mathrm{C}-1)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3369, 2925, 1653, 1603, 1165, 1039. FAB-MS: $m / z(\%) 467$ ($[\mathrm{M}+\mathrm{Na}]^{+}, 55$), 91 (100). HRFABMS: $m / z 467.1889[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{10} \mathrm{Na}, 467.1893$).
3.2.12 Compounds 24 and 25. The solution of $9(0.2 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $10 \mathrm{ml} 80 \%$ HOAc was stirred at $70-80^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under vacuum to give a residue which was purified by silica gel chromatography. $24(0.12 \mathrm{~g})$ was obtained as colourless oil. $[\alpha]_{D}^{25}-43.4(c=0.12, \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right) \delta(\mathrm{ppm}): 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.35\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.82\left(\mathrm{dd}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime}\right), 3.66\left(\mathrm{dd}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.41-3.16(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$ and $\mathrm{H}-5^{\prime}$), 2.77-2.58 (m, 2H, H-4), $1.87-1.77$ (m, 1H, H-3), 1.73-1.64 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- $\left.d_{6}\right) \delta(\mathrm{ppm}):$
143.5 (C-5), 129.3 (C-7 and C-9), 129.0 (C-6 and C-10), 126.3 (C-8), 101.9 (C-1'), 78.0 (C3^{\prime}), 77.2 (C-5'), 74.8 (C-2'), 73.8 (C-2), 71.8 (C-4'), 63.1 (C-6'), 39.9 (C-3), 32.2 (C-4), 20.0 (C-1). FAB-MS: $m / z(\%) 335\left([M+N a]^{+}, 85\right), 115$ (60), 91 (100). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3388, 2970, 2927, 1603, 1496, 1454, 1379, 1076, 1028. HRFAB-MS: $m / z 335.1475[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}, 335.1471$).

Compound 25 was obtained by the same procedure above-mentioned. $[\alpha]_{D}^{25}-14.7$ $(c=0.14, \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta(\mathrm{ppm}): 7.26-7.13(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.12-7.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.37\left(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.78\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, $3.69-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 3.43-3.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 2.77-2.62$ (m, 2H, H-4), 1.87-1.78 (m, 1H, H-3), 1.73-1.64 (m, 1H, H-3), $1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}$, $\mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta(\mathrm{ppm}): 143.5(\mathrm{C}-5), 129.2(\mathrm{C}-7$ and C-9), 129.0 (C-6 and C-10), 126.3 (C-8), $104.0\left(\mathrm{C}-1^{\prime}\right), 78.0\left(\mathrm{C}-3^{\prime}\right), 77.1\left(\mathrm{C}-5^{\prime}\right), 76.3\left(\mathrm{C}-2^{\prime}\right), 75.1(\mathrm{C}-2)$, 71.7 (C-4'), 63.0 (C-6'), 39.5 (C-3), $32.0(\mathrm{C}-4), 22.3(\mathrm{C}-1) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3340,2970$, 2931, 1616, 1495, 1371, 1163, 1082, 1026. FAB-MS: $m / z(\%) 335\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 115$ (25), 91 (60). HRFAB-MS: $m / z 335.1463[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}, 335.1471$).

3.3 Biological evaluation

3.3.1 Anti-tumour activities. Anti-tumour activities of compounds 1, 2, 24 and $\mathbf{2 5}$ against human cell lines were evaluated using the MTT assay. The results are given as IC_{50} values and are shown in table I.

References

[1] S.J. Dai, R.Y. Chen, P.C. Zhang, D.Q. Yu. J. Asian Nat. Prod. Res., 7, 681 (2005).
[2] Northwest Plateau Institute of Biology, CAS, [M] Economic Flora Qinghaiica, 1st ed., Qinghai Peopleos Publishing House, Xining (1987).
[3] Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edits, Florae Reipublicae Popularis Sinicae, [M] Tomus 57 (1) Science Press, Beijing (1994).
[4] Jiangsu New Medical College, Dictionary of Traditional Chinese Medicine, [Z] p. 264, Science and Technology Press, Shanghai (1985).
[5] K. Nakamura, M. Fujii, Y. Ida. Tetrahedron: Asymmetry, 12, 3147 (2001).
[6] K.C. Nicolaou, J.A. Pfefferkorn, A.J. Roecker, G.-Q. Cao, S. Barluenga, H.J. Mitchell. J. Am. Chem. Soc., 122, 9939 (2000).
[7] R. Rober, F.-R. Bert. Tetrahedron, 52, 7663 (1996).
[8] N. Kaoru, I. Yuko, M. Tomoko, M. Ibuki. J. Chem. Soc. Perkin Trans., 1(16), 2397 (1999).
[9] M. Masato, I. Yukishige, O. Tomoya. Carbohydr. Res., 195, 199 (1990).

[^0]: *Corresponding author. Email: dqyu@imm.ac.cn

